CONTENTS

1. MECHANISM

1. Needle bar, thread take-up, lower shaft, and shuttle hook mechanism 1
2. Work clamp mechanism (1) 1
3. Work clamp mechanism (2) 2
4. Work clamp mechanism (3) 2
5. Feed mechanism (X axis) 3
6. Feed mechanism (Y axis) 3
7. Intermittent-presser foot mechanism (1) ... 4
8. Intermittent-presser foot mechanism (2) ... 4
9. Thread trimming mechanism 5
10. Thread release mechanism 5
11. Thread wiper mechanism 6
12. Thread winding mechanism 6
13. Lubrication 7

2. DISASSEMBLY PROCEDURES

1. Covers 8
2.1 Work clamps (solenoid type) 10
2.2 Work clamps (pneumatic type) 11
3. Lower shaft 12
4. Longitudinal feed (Y axis) 13
5. Traverse feed (X axis) 14
6. Thread wiper 15
7. Intermittent-presser foot 16
8. Needle bar 17
9. Work clamp lifter and thread release ... 18
10. Thread trimming 19
11. Intermittent-presser foot lifter 20
12. Upper shaft 21

3. ASSEMBLY AND ADJUSTMENT PROCEDURES

1. Upper shaft 22
2. Intermittent-presser foot lifter 23
3. Needle bar 24
4. Intermittent-presser foot 25
5. Work clamp lifter and thread release ... 27
6. Thread trimming 29
7. Traverse feed (X axis) 30
8. Longitudinal feed (Y axis) 32
9. Lower shaft and relevant 33
10. Work clamp arm and relevant 34
11. Thread wiper 36
12. Intermittent-presser foot 38
13. Covers and relevant 39

4. STANDARD ADJUSTMENTS

1. Adjustment of needle-bar height 42
2. Matching the needle with the tip of the shuttle hook 42
3. Adjustment of clearance between the needle and the tip of the shuttle hook .. 43
4. Adjustment of the needle receiver of the driver 43
5. Adjustment of the shuttle hook thread guide 44
6. Adjustment of the work clamp lift 45
7. Adjustment of the moving blade 45
8. Adjustment of the presser foot 47
9. Adjustment of the intermittent-presser foot lifter 47
10. Adjustment of the thread wiper 48
11. Adjustment of the needle-stop position and feed timing ... 49
12. Adjustment of the original point 50
13. Adjustment of the upper thread release timing 51
14. Adjustment of the backlash 52
15. Adjustment of the intermittent-presser foot lift 47
16. Adjustment of the thread wiper 48
17. Adjustment of the needle-stop position and feed timing ... 49
18. Adjustment of the original point 50

5. HOW TO MAKE UP THE PRESSER

1. How to make up the clamping type presser . 54
2. How to make up the cassette type presser 56

6. ADJUSTMENT OF ELECTRIC APPLIANCES

1. Description on fuse 58
2. Voltage measurement 59
3. LEDs on PCB 60
4. How to use the DIP switch 61
5. Description of each connector 63
6. Description on control box 65

7. TROUBLESHOOTING LIST 66

8. SPARE PARTS LIST 69

9. CONTROL CIRCUIT BLOCK DIAGRAM .. 70

10. TROUBLESHOOTING FLOW CHART 71

11. COUNTERMEASURES 78
1. Needle bar, thread take-up, lower shaft, and shuttle hook mechanism

- Needles bar/Thread take-up mechanism
- Lower shaft/shuttle hook mechanism

2. Work clamp mechanism (1)

- Solenoid lever shaft
- Work clamp cam lever
- Feed cam roller
- Work clamp roller
- Main work clamp solenoid (acting on the final needle when turned ON)
- Slide block
- Work clamp lifter lever
- Work clamp lifter plate
- Eccentric part
Work clamp mechanism (2)

- While the sewing machine is kept stopped, the mechanism comes to a rest in "Work clamp mechanism (2)." When the work clamp lifter pedal is pressed, the work clamp lifter solenoid works, raising the work clamp.

Work clamp mechanism (3)

- Work clamp arm lever
- Work clamp arm lever plate
- Work clamp lifter solenoid-ON
- Pull
- Work clamp lifter wire
- Work clamp foot
- Work clamp
Feed mechanism (X axis)

- Supported and guided by the X retainer and X feed guide, the feed base X fixed on the timing belt traverses.

Feed mechanism (Y axis)

Forward and backward motion
4 Intermittent-presser foot mechanism (1)

- Intermittent-presser lever
- Mechanism for raising the presser foot.

Intermittent-presser foot mechanism (2)

- Mechanism for raising the presser foot.

From the library of: Superior Sewing Machine & Supply LLC
Thread trimming mechanism

- The thread trimming cam lever is released from the stopper and falls down.

- Swing motion
- Up and down motion

Thread release mechanism

- The thread tension disk opens.
7 Thread wiper mechanism

- Solenoid lever
- Wiper solenoid-ON
- Wiper link
- Thread wiper crank assembly
- Wiper

8 Thread winding mechanism

- Bobbin holder
- Pushing
- Thread-winding cam shaft
- Leaf spring
- Rubber ring
- Thread-winding arm
Lubrication
Disassemble the illustrated parts in the order of the encircled figures.

Covers (1)

1. Needle
2. Upper cover
3. Emergency stop switch
4. Bellow holder
5. Bellow
6. Large shuttle hook cover
7. Bellow
8. Bed cover
9. Side cover R
10. Side cover LD
11. Side cover LU
12. Intermittent cover

Disassemble the illustrated parts in the order of the encircled figures.

From the library of: Superior Sewing Machine & Supply LLC
From the library of: Superior Sewing Machine & Supply LLC
Lift the auxiliary plate and remove it.

Loosen the screws on both sides.

Turn the pulley by hand to lower the work clamp lifter plate.
Work clamp (pneumatic type)

DISASSEMBLY PROCEDURES

1. Pull out the air tube while pushing this part.

- **Stud screw**
- **Air tube**
- **Work clamp arm**
- **Cylinder support**

From the library of: Superior Sewing Machine & Supply LLC
Lower shaft

1. Extract the shaft.
2. Turn the claw to the side.
3. Lower shaft
4. Shuttle race ring
5. Shuttle hook
6. Stop ring
7. Driver
8. Loosen the screw.

Longitudinal feed (Y axis)

1. Bolt (5x8)
2. Y feed guide R
3. Y feed guide L
4. Y retainer
5. X feed shaft support
6. Pulse motor Y assembly
7. Y rack assembly

From the library of: Superior Sewing Machine & Supply LLC
Traverse feed (X axis) (1)

Steps 5 through 10 indicate the removal procedure of the timing belt.

Loosen.

Belt shaft U

Bolt

Stop ring

Pulley base

Bearing cover

Loosen the nut.
DISASSEMBLY PROCEDURES

Traverse feed (Y axis) (2)

1. Loosen the screws.
2. Belt shaft D
3. Bearing collar S
4. Idler gear
5. Pulse motor base
6. Loosen the screws.

6. Thread wiper

1. Wiper
2. Stop ring
3. Remove the wiper link.
4. Set collar
5. Thread wiper crank
6. Thread wiper spring
7. Washer
8. Wiper solenoid
9. Solenoid lever

From the library of: Superior Sewing Machine & Supply LLC
Intermittent-presser foot

1. Presser foot
2. Intermittent feed arm R
3. Loosen the set screw.
4. Intermittent support (Intermittent support shaft)
5. Roller
6. Nut
7. Washers
8. Feed lever shaft
9. Intermittent stopper L
10. Adjusting screw
11. Loosen the screw.
12. Presser bar spring
13. Presser bar clamp
14. Presser bar
15. Loosen the screw.
16. Stud screw
17. Intermittent lever
18. Feed lever roller
19. Intermittent guide
20. Stop ring
21. Loosen the screw.
22. Intermittent lever
23. Feed lever roller
24. Intermittent guide
25. Stop ring
26. Roller
27. Loosen the screw.
28. Stud screw
29. Loosen the set screw.
30. Intermittent support (Intermittent support shaft)
31. Roller
32. Nut
33. Washers
34. Feed lever shaft
35. Intermittent stopper L
36. Adjusting screw
37. Loosen the screw.
38. Stud screw
39. Loosen the set screw.
40. Intermittent support (Intermittent support shaft)
41. Roller
42. Nut
43. Washers
44. Feed lever shaft
45. Intermittent stopper L
46. Adjusting screw
47. Loosen the screw.
48. Stud screw
49. Loosen the set screw.
DISASSEMBLY PROCEDURES

8 Needle bar

- Loosen the (4.37 x 8) screw.
- Loosen the screws.
- Needle bar clamp
- Needle bar thread guide
- Oil cap
- Needle bar
- Pull out upward.
- Loosen the screw.
- (4.37 x 8)
- Remove the screw.
- (3.57)
- Loosen the screw.
- (5.95)
- Thread take-up
- Thread take-up support shaft
- Needle bar crank
- Needle bar clamp
- Slide block
- Loosen the screws.

From the library of: Superior Sewing Machine & Supply LLC
Work clamp lifter and thread release

1. Work clamp lifter base assembly
2. Screw
3. Work clamp lifter lever
4. Upper thread-release lever
5. Work clamp lifter lever shaft
6. Slide block
7. Work clamp lifter plate
8. Lever spring
9. Spring
10. Stirrup lever
11. Work clamp lifter lever

Steps:
1. Remove the spring.
2. Loosen the screw.
3. Slide block
4. Pull out downward.
5. Loosen the screw.
6. Remove the slide block.
7. Work clamp lifter plate
8. Lever spring
9. Stirrup lever
10. Work clamp lifter lever

From the library of: Superior Sewing Machine & Supply LLC
Thread trimming

1. Lay the sewing machine down.
2. Thread trimming spring
3. Return the sewing machine to its original position.
4. Lubrication support assembly
5. Nut (5.95)
6. Needle plate assembly
7. Turn the sewing machine down.
8. Stud screw
9. Thread trimming shaft base
10. Return the sewing machine to its original position.

From the library of: Superior Sewing Machine & Supply LLC
1. Presser foot lifter RS lever
2. Presser foot solenoid
3. Intermittent presser foot shaft
4. Stop ring
5. Intermittent presser foot leverspring
6. Stop ring
7. Intermittent presser foot lever
8. Loosen the screw. (4.37)
From the library of: Superior Sewing Machine & Supply LLC
Upper shaft

1. Pass the upper shaft ① through the presser foot lifter cam ②, feed connecting rod ③, and cam washer ④ in that order.

2. Attach the bearing case ⑤ to the frame.

3. Push the presser foot lifter cam ② against the screw recess so that the cam washer ④ still turns lightly, and then tighten.

4. Allow the pulley ⑥ to touch the set collar ⑦ lightly, and attach to the upper shaft ①.

5. Align the matching mark on the crank rod upper cover ⑧ with the matching mark on the crank rod ⑨. Attach the crank rod ⑥ to the crank rod upper cover ⑧.
(6) Fit the screw hole of the balance crank ⑩ with the hole of the upper shaft ⑨. Attach the balance crank to the upper shaft.

2 Intermittent-presser foot lifter

(1) Insert the intermittent presser lever ①, connecting rod ②, and presser foot lifter RS lever ③ into the arm.

(2) Fit the presser foot lifter RS lever ③ onto the shaft of the presser foot solenoid ④. Attach the presser foot solenoid ④ to the frame.

(3) Insert the intermittent presser foot lifter shaft ⑤ into the intermittent presser lever ① and fit the stop ring ⑥. Tighten the stop screw ⑦ while lightly pressing the intermittent presser foot lifter shaft toward the arm.

(4) Set the spring ⑧, and the right-side stop ring ⑨.
(1) Assemble the thread take-up ① and thread take-up support shaft ②. Push the thread take-up support shaft lightly, and attach it onto the screw recess with the screw.

(2) Insert the needle bar crank ③ into the thread take-up ① and balance crank assembly ④. Remove the screw ⑤ and make sure that the shaft part of the needle bar crank ③ comes into contact with the screw recess. Tighten the needle bar crank.

(3) Turn the pulley so that the screw ⑥ can be fixed through the side hole. Then, tighten the screw ⑥.

(4) Insert the slide block ⑦ into the needle bar guide ⑧ with the hole of the slide block facing upward.

(5) Insert the needle bar clamp ⑨ into the needle bar connecting rod ⑩ and slide block ⑦.
(6) Insert the needle bar \(\text{from the top of the arm (with the oblique cut part of the needle bar toward the operator).} \)

(7) Turn the pulley so that the needle bar comes to the lowest position. Match the reference line of the needle bar with the second lowest line (DP x 17). Tighten the screw of the needle bar clamp. (In case of the needle DP x 5, use the top reference line.)

(8) Fit the needle-bar thread guide \(\text{on the needle bar} \).

(9) Mount the oil caps \(\text{and} \) on the frame.

4 Intermittent-presser foot

(1) Fit the intermittent feed shaft \(\text{to the frame and insert the intermittent feed arm R} \).

(2) Insert the roller \(\text{into the feed connecting rod} \).

(3) Lightly hold the frame between the intermittent feed shaft \(\text{and intermittent feed arm R} \) and tighten the screw \(\).

(4) Fit the guide part of the presser bar clamp \(\text{with the groove of the frame. Insert the presser bar from the top of the arm, and insert the stopper L} \) at the same time. (Position the screw hole plane part of the presser bar \(\text{toward you.} \)
(5) Fit the intermittent lever 10 in the shaft of the presser bar clamp 7, and tighten the roller shaft 11.

(6) Attach the link 12.

(7) Fit the feed lever roller 13 in the intermittent lever 10. Temporarily secure the intermittent guide 14 to the frame.

(8) Attach the adjusting screw 15.

(9) Try to move the presser bar 8 up and down and find a point where there is the least resistance. Tighten the intermittent guide 14 at this point.

(10) Fit the roller 16 in the roller shaft.

(11) Fit the intermittent support shaft 17 in the roller 16, and fit with the screw recess. Lightly push the intermittent support shaft 17 and tighten.

(12) Fit the stop ring 18 in the roller shaft.

(13) Remove the adjusting screw 19 and insert the presser bar spring 19. Tighten the adjusting screw again and fix it with the nut 19.

(14) Turn the pulley until the presser bar comes to the lowest position. Loosen the intermittent feed arm L 20.

(15) Try to move the link L 12 leftward and rightward, and find a place where there is no clearance between the bottom surface of the presser bar clamp 7 and the stopper L 9. Tighten the link 20 at this point. (Move the link L 12 while pushing it at the point indicated by the arrow, and the link L becomes easily movable.)
(1) Assemble the work clamp lifter lever ①, upper thread release lever ②, and upper thread release rod ③. Put the assembly in the arm.

(2) Insert the end of the upper thread release rod ③ until it comes contact with the thread release shaft ④.

(3) Fit the lever spring ⑤ with the boss of the frame.

(4) Insert the work clamp lifter plate ⑥ from the lower surface of the frame.

(5) Fit the slide block ⑦ in the shaft of the work clamp lifter plate ⑥.

(6) Insert the work clamp lifter lever shaft ⑧ and fit with the screw recess. Tighten the screw ⑨ while pushing the work clamp lifter lever shaft lightly.
(7) Raise the work clamp lifter plate 6 and fit the lever spring 5 with the work clamp lever 1.

(8) Place the roller of the cam lever 10 under the work clamp lifter lever 1, and mount the work clamp lifter base 11. Ensure that there is a clearance of 0.5 mm between the end of feed roller shaft 12 and the end of the work clamp lifter cam 13.

(9) Turn the pulley until the thread take-up comes to the lowest position, while pushing the main work clamp solenoid 15 so that the feed roller 14 rests on the work clamp lifter cam 13.

(10) Push the thread release shaft 4 with part A of the upper thread release rod 3, and adjust using the upper thread release lever 2 until the thread tension disk loosens.
(1) Attach the thread trimming base ① to the frame. Ensure that there is a clearance of 0.5 mm between the end of the roller shaft ② and the end of the thread trimming cam ③.

(2) Attach the upper shaft lubrication support plate ④ to the thread trimming base ①.

(3) Lay the sewing machine down.

(4) Attach the thread trimming shaft base ⑤ to the frame.

(5) Attach the thread trimming rod B ⑥ to the thread trimming lever ⑦.

(6) Attach the thread trimming rod A ⑧ to the thread trimming cam lever ⑨, and tighten with the nut ⑩.
(7) Hook up the thread trimming spring \(\textcircled{1} \).

(8) Return the sewing machine to the original position.

(9) Attach the needle plate \(\textcircled{4} \) by fitting the pin on the thread trimming lever \(\textcircled{3} \) into hole in the thread trimming connecting rod \(\textcircled{2} \). Start tightening with the flat head screw.

Traverse feed (X axis)

(1) Attach the timing belt \(\textcircled{2} \) and timing pulley \(\textcircled{3} \) to the pulse motor base \(\textcircled{1} \) and then attach the belt shaft \(\textcircled{4} \).

(2) Set the bearing collar \(\textcircled{5} \) and idle gear \(\textcircled{6} \) in place at the top of the belt shaft \(\textcircled{4} \). Adjust the screw recess by lightly holding the belt shaft against them, and then fix with the screws.

(3) Ensure that the clearances on both sides of the timing pulley \(\textcircled{3} \) are equal. Secure the timing pulley \(\textcircled{3} \) with the screws while adjusting the screw recess.
(4) Securely attach the pulse-motor base ① to the bed base.

(5) Attach the timing belt ② and timing pulley ⑧ to the pulley base ⑦. Attach the belt shaft U ⑨ on the reverse side.

(6) Mount the stop ring ⑩ on the belt shaft U ⑨ and attach the bearing cover ⑪.

(7) Ensure that the clearances on both sides of the timing pulley ⑧ are equal. Tighten the timing pulley ⑧ with the screws while adjusting the screw recess.

(8) Temporarily tighten the pulley base ⑦ on the bed base. Adjust the timing belt ② using the adjusting bolt ⑫ so that the timing belt produces a deflection of 4 mm under a load of approximately 400 g applied at the center of the belt. Fix the pulley base with 3 bolts.

(9) Fix the adjusting bolt ⑫ with the nut ⑬.
(10) Push the X feed guide against the end of the bed base, and tighten.

(11) Attach the X retainer and feed table X to the X feed guide.

(12) Temporarily tighten the X retainer and X feed guide to the feed table X using the bolts. Try to move the feed table X rightward and leftward while pushing the X feed guide. Find a point where the feed table X causes no chattering and moves smoothly. Fix the feed table at this point using the bolts.

(13) Fit the teeth of the timing belt into the groove of the belt holder. Load 2 belt holders and tighten while moving the feed table X.

8 Longitudinal feed (Y axis)

(1) Put the Y rack into the frame. Insert the Y original point dog with it parallel to the axis.

(2) Attach the pulse-motor Y to the frame while raising it lightly so that its backlash becomes 0.
ASSEMBLY AND ADJUSTMENT PROCEDURE

1. Lay the sewing machine down.
2. Put the lower shaft in the machine from the rear side, and fit it to the ground surface of the set collar facing the bushing side.
3. Engage the lower shaft gear with the swing gear, and tighten the set collar so that the lower shaft does not chatter.
4. Mount the stop ring on the lower shaft.
5. Fit the driver with the lower shaft. Temporarily tighten it through the stop ring.
6. Return the sewing machine to its original position.

(3) Push the Y feed guide against the end of the feed table, and tighten.

(4) Attach the Y retainer and feed table.

(5) Attach the Y retainer and feed guide R, and move the feed table to the left. Lightly push the Y feed guide, and tighten at a point where the feed table causes no chattering and moves smoothly, using the bolts.

(6) Tighten the Y rack to the X feed shaft support.
10 Work clamp arm and relevant

(1) Attach the auxiliary plate ① to the frame, and tighten while matching the upper surface of the auxiliary plate with the upper surface of the needle plate ②.

(2) Tighten the feed plate ③ to the feed table Y ④.

(3) Attach the feed table cover ⑤ to the feed table Y ④.

For electromagnetic types (For pneumatic types, start from item (10).)

(4) Attach the work clamp lifter solenoids R ① and L ② to the frame.

(5) Remove the presser springs ③.

(6) Fit the work clamp arm ④ into the groove in the feed table Y ⑤ and secure.

(7) Attach the presser springs ③ again.

(8) Put the plunger pin ⑦ at the top of the work clamp lifter wire ⑥, and hold it with the stop ring ⑨.

From the library of: Superior Sewing Machine & Supply LLC
(9) Hold the tip of the work clamp lifter wire fitting 6 with the wire presser V 10, and tighten.

(10) Fit the work clamp arm 4 into the groove in the feed table Y 5, and secure.

(11) Attach the cylinder support 1 to the feed table Y 5.

(12) Attach the cylinder joint 12 to the work clamp arm lever C 13.

(13) Connect the air tube as illustrated in the Figure to the left.
(1) Attach the wiper solenoid ① to the solenoid base ②.

(2) Temporarily tighten the solenoid lever ③ to the wiper solenoid ①.

(3) Attach the thread wiper crank ④, washer ⑤, spring ⑥, and set collar ⑦ as illustrated.

(4) Lightly push the thread wiper crank ④ until the screw is aligned with the screw recess, and tighten the thread wiper crank.

(5) Hook the spring ⑥ on the screw.

(6) Fit the wiper link ⑧ with the pin on the thread wiper crank ④, and mount the stop ring ⑨.

(7) Temporarily tighten the thread wiper ⑩ to the thread wiper crank ④.

(8) Attach the face plate ⑪.

From the library of: Superior Sewing Machine & Supply LLC
(9) Attach the needle \(\text{②} \).

(10) Adjust using the solenoid lever \(\text{②} \) so that the thread wiper \(\text{⑩} \) becomes horizontal at the point where it stops.

(11) Turn the pulley so that needle tip is positioned 19 mm away from the upper surface of the needle plate.

(12) Adjust by putting the thread wiper \(\text{⑩} \) in and out until there is clearance of 2 mm between the needle and thread wiper \(\text{⑩} \).

(13) Turn the pulley by hand until the needle is at the lowest position. Align the reference line of the needle bar with the lowest reference line (DP x 17). (In the case of the needle DP x 5, use the second highest reference line.)

(14) Insert the shuttle hook \(\text{⑮} \) into the arm. Adjust the driver \(\text{⑭} \) until the tip of the shuttle hook rests at the center of the needle.

(15) Attach the shuttle race ring \(\text{⑯} \) to the arm, and set the claw. Put the bobbin case \(\text{⑰} \) in the shuttle hook \(\text{⑮} \).
12 Intermitent-presser foot

(1) Remove the oil cap ① on the face plate.

(2) Turn the pulley until the needle is at the lowest position.

(3) Loosen the screw on the presser bar clamp ②.

(4) Turn the pulley until the needle is at the highest position.

(5) Fit the presser foot ③ in the presser bar ④ and align with the top end of the screw head ⑤. Temporarily tighten the presser foot.

(6) Turn the pulley until the needle bar rests at the lowest position while ensuring the needle rests at the center of the hole in the presser foot.

(7) Press lightly the top of the presser foot ③ against the needle hole plate, and tighten the screw on the presser bar clamp ②.

(8) Attach the oil cap ①.

(9) Attach at the center of the groove of the presser foot ③.
ASSEMBLY AND ADJUSTMENT PROCEDURE

Covers and relevant

1. Attach the upper cover (1).

2. Attach the bellows R (2) and L (3). Move the feed table rightward and leftward while tightening them to the feed table (4).

3. Attach the bellow holder R (5) and L (6).

4. Attach the side cover R (7).

5. Attach the side cover LU (8).
(6) Attach the side cover LD®.

(7) Attach the bed cover®.

(8) Mount the emergency stop switch®.

(9) Attach the intermittent cover®.

(10) Attach the large shuttle hook cover® to the arm using the wave washer® and stud screw®.

(11) Lay the sewing machine down. Fit the V-belt and return the sewing machine to its original position.

(12) Attach the belt cover M®.
(13) Attach the belt cover U (9).

(14) Attach the belt cover D (7) with two screws and washers.

(15) Attach the original point cover (10).
1 Adjustment of needle-bar height

(1) Remove the oil cap ①.

(2) Turn the pulley until the needle bar rests at the lowest position.

(3) Loosen the screw ②.

(4) Align the second lowest reference line with the lower end of the needle bar bushing (the needle of DP x 17). (For a DP x 5 needle, use the highest reference line).

2 Matching the needle with the tip of the shuttle hook

(1) Turn the pulley to raise the needle bar from the lowest position and align the lowest reference line with the lower end of the needle bar bushing (for a DP x 17 needle). (For a DP x 5 needle, use the second highest reference line.)

(2) Loosen the set screw ① and adjust using the driver ② so that the tip of the shuttle hook aligns with the center of the needle.
3 Adjustment of clearance between the needle and the tip of the shuttle hook

(1) Turn the pulley to allow the tip of the shuttle hook to align with the center of the needle.

(2) Adjust by loosening the screw and turning the eccentric shaft so that the clearance between the needle and the tip of the shuttle hook is from 0.01 mm to 0.08 mm.

4 Adjustment of the needle receiver of the driver

(1) Align the tip of the shuttle hook with the center of the needle by turning the pulley.

(2) Lay the sewing machine down.

(3) Loosen the screw. Adjust by turning the eccentric shaft so that the needle lightly contacts the needle receiver of the driver.
(1) Remove the feed plate ①.

(2) Loosen the screws ②.

(3) Raise the auxiliary plate ③ and remove by sliding it toward the operator.

(4) Remove the needle plate ④.

(5) Drive the needle groove of the shuttle hook thread guide ⑤ into both sides of the needle center. Allow the needle to lightly touch the bottom and tighten.
6 Adjustment of the work clamp lift

(1) Loosen the nut ② and adjust the adjusting screw ③ until there is a clearance of 2 mm between the work clamp lifter plate ① and the lower surface of the arm, when the work clamp lifter plate is raised.

<To set the work clamp lift to a maximum of 20 mm:>

(1) Loosen the screws ③ (right and left) and adjust so that there is a clearance of 1 mm between the work clamp lifter plate ① and lever plate ② (right and left) when the holder is lowered.

(2) If the clearance is greater, the lift is reduced.

(3) Loosen the screws ④ and pull the wire tube on the solenoid side until the wire of the presser arm lever part becomes 5 to 6 mm.

7 Adjustment of the moving blade

(1) Set the sewing machine in the stop position.

(2) Loosen the screw ③ and adjust using the thread trimming connecting lever ④ so that the needle groove edge ① of the shuttle hook thread guide ① is even with the tip of the moving blade ②.
Replacement of the moving and fixed blades

(1) Remove the feed plate ①.

(2) Loosen the screws ②.

(3) Raise the auxiliary plate ③ and remove by sliding it toward the operator.

(4) Remove the needle plate ④.

(5) Remove the moving blade ⑤ and replace it with the new one.

(6) Remove the fixed blade ⑥ and replace it with the new one. Ensure that there is a clearance of 1 mm between the needle hole plate ⑦ and the new fixed blade ⑥ after replacement. Make sure that the tip of the fixed blade ⑥ does not protrude leftward from the end of the needle-hole plate ⑦.

(7) Reassemble the moving and fixed blades by reversing the disassembly steps.
8 Adjustment of the presser foot

(1) Turn the pulley until the presser foot is at the lowest position.

(2) Loosen the screw ①. Retighten it at a position where the lower surface of the presser foot ② lightly contacts the material to be sewn.

(3) Turn the pulley and make sure that the needle enters the center of the presser foot.

(4) If the needle does not enter the center of the presser foot, remove the oil cap ③, loosen the screw ④, and turn the presser bar ⑤ to adjust.

9 Adjustment of the intermittent-presser foot lift

The standard lift of the presser foot is 3.5 mm.

<To change the standard lift:>

(1) Loosen the nut ①. Raising the set position of the feed connecting rod ② increases the lift; lowering the set position decreases the lift.

(2) Remove the face plate ③.
(3) Turn the pulley until the presser bar is at its lowest position. Loosen the intermittent feed arm L 4.

(4) Ensure that there is no clearance among the presser bar clamp 7, intermittent stopper 8, and presser bar bushing 9, with the intermittent support 5 kept touching the intermittent stopper support 6. Tighten the intermittent feed arm L 4.

10 Adjustment of the thread wiper

(1) Adjust the thread wiper 1 with the solenoid lever 2 so that the wiper becomes horizontal at the stop position.

(2) Actuate the thread wiper 1. Adjust the thread wiper with the screw 3 so that there is a clearance of approximately 2 mm between the thread wiper 1 and the tip of the needle. Make sure that the thread wiper does not strike the presser foot 4.

At the same time, ensure that when viewed from the front the tip of the thread wiper 1 protrudes approximately 2 mm from the center of the needle.
Adjustment of the needle-stop position and feed timing

1. Remove the cover ① of the synchronizer.

2. Adjust the needle-stop position with the element ② so that the needle tip comes to a stop 19–20 mm away from the upper surface of the needle plate. Turning the element ② clockwise raises the stop position; counterclockwise, lowers it.

3. Adjust the timing of the needle and feed with the element ③ so that feed starts working after the needle has come out of the material being sewn and stops before the needle touches the material. Note: For thicker material, increasing the feed timing speed reduces needle flow and improves sewing performance.
(1) Remove the feed plate ①.

(2) Attach the original-point reference plate ②. The original point is in the center on the operator side.

<Adjustment of X axis>

(1) Remove the bellow holder L ①.
(2) Remove the bellow L ②.
(3) Switch the sewing machine ON.
(4) Press the [P] key on the programmer.
(5) Move the needle tip toward the original-point reference plate by turning the pulley.
(6) Loosen the hexagonal bolt ③ so that the needle tip is aligned with the original point. Adjust the X axis by moving the X original point dog ④ rightward and leftward.

<Adjustment of Y axis>

(1) Remove the original-point cover ①.
(2) Switch the sewing machine ON.
(3) Press the [P] key on the programmer.
(4) Move the needle tip toward the original-point reference plate by turning the pulley.
(5) Loosen the hexagonal bolt ②. Move the original-point dog ③ forward and backward until the needle tip aligns with the original point.
(3) Loosen the nut 3 and screw 4. Make adjustment with the adjusting screw 5.

(4) Ensure that the timing belt is deflected by approximately 4 mm at the center under a load of approximately 420 g.

Adjustment of the upper thread release timing

(1) Remove the upper cover 1.

(2) Turn the pulley while pushing the main work clamp solenoid 2. Place the feed cam roller 3 on the work clamp lifter cam 4 and keep the thread take-up 5 at the lowest position. Then, adjust with the upper thread release lever 6 until the upper thread loosens.
<Lower shaft>
(1) Lay the sewing machine down.

(2) Loosen the screw ① and turn the swing gear shaft ② to adjust the backlash. Provide a play of 0.04 ~ 0.07 mm at the top of the driver ③.

<Lateral feed>
(1) Loosen the bolts ① and slightly raise the pulse-motor ②. Adjust so that no backlash remains between the drive gear ③ and the Y-rack shaft.

<Traverse feed>
(1) Loosen the bolts ① and slightly raise the pulse-motor X ②. Adjust so that there is no backlash between the drive gear ③ and the idle gear ④.
STANDARD ADJUSTMENTS

Adjustment of the thread trimming cam

(1) Adjust with the thread trimming cam ② until there is a clearance of 0.5 mm between the roller shaft ① and the thread trimming cam ②.

Adjustment of the work clamp lifter base position

(1) Attach the work clamp lifter base ① while ensuring that there is a clearance of 0.5 mm between the work clamp lifter cam ② and feed cam roller shaft ③.
HOW TO MAKE UP THE PRESSER

The presser is available in two types; clamping type and cassette type. The maximum sewing range is 100 (L) x 120 (W) mm.

Clamping Type

- Work clamp (Separate type)
- Work clamp (Single type)

Cassette Type

- Clamp spring
- Cassette clamp

1. How to make up the clamping type presser

1. **How to make up the work clamp blank**

 Cut out the work clamp blank so that the cutout size is wider than a sewing position by (half of the presser foot diameter + 1-1.5 mm).

 \[D \text{: Diameter of the top end of the presser foot} \]

2. **How to make up the feed plate blank**

 Cut out the feed plate blank 1-1.5 mm apart from the sewing position.

 In the case of the left figure, 1-1.5 mm margin is required on both sides of the sewing position.
3. How to make up the plastic presser

(1) Cut out the plastic plate according to the contour of a material to be sewn.

(2) Bond a paper cushion material or the like around the cut-out part to securely press a material to be sewn.

(3) Make up the feed plate blank by referring to item “2. How to make up the feed plate blank.”

2 How to make up the cassette type presser

* The cassette type presser is composed of a cassette plate U, cassette plate D, and hinges as illustrated in the left figure.

(1) Cut out the cassette plates U and D. For cutting dimensions, refer to section “1. How to make up the clamping type presser.”

* Making up two cassettes to use them alternately will increase work efficiency.

(2) Bond a paper cushion material or the like around the cut-out part to securely press a material to be sewn.

* The cassette plate D is available in two types; D-A and D-B.

* Use the cassette plate D-B with the same way as the D-A, except that a plastic plate or the like must be bonded on the back of the D-B. When mounting hinges on the cassette plate D-B, insert a countersunk screw M3 into the 4.6 mm diameter countersunk hole prior to bonding the plastic plate.
Work clamp blank

<table>
<thead>
<tr>
<th>Work clamp blank</th>
<th>132</th>
<th>153448-000</th>
<th>153449-000</th>
<th>153450-000</th>
</tr>
</thead>
<tbody>
<tr>
<td>B·1R</td>
<td>t3.2</td>
<td>Work clamp blank 1-2R</td>
<td>Work clamp blank 1-3L</td>
<td>Work clamp blank 1-4L</td>
</tr>
<tr>
<td>t4</td>
<td>153470-000</td>
<td>Work clamp blank 1-5L</td>
<td>Work clamp blank 1-6L</td>
<td></td>
</tr>
<tr>
<td>t3.2</td>
<td>153471-000</td>
<td>Work clamp blank 2-3R</td>
<td>Work clamp blank 2-3L</td>
<td>Work clamp blank 2-4L</td>
</tr>
<tr>
<td>t4</td>
<td>153472-000</td>
<td>Work clamp blank 2-4R</td>
<td>Work clamp blank 2-4L</td>
<td>Work clamp blank 2-5L</td>
</tr>
<tr>
<td>t5</td>
<td>153473-000</td>
<td>Work clamp blank 2-5R</td>
<td>Work clamp blank 2-5L</td>
<td>Work clamp blank 2-6L</td>
</tr>
</tbody>
</table>

Feed plate blank

<table>
<thead>
<tr>
<th>Feed plate blank</th>
<th>156</th>
<th>186</th>
<th>170</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed plate blank 1</td>
<td>t1</td>
<td>S0234-000</td>
<td></td>
</tr>
<tr>
<td>Feed plate blank 2</td>
<td>t2</td>
<td>S02843-000</td>
<td></td>
</tr>
<tr>
<td>Feed plate blank 3</td>
<td>t1</td>
<td>S02844-000</td>
<td></td>
</tr>
<tr>
<td>Feed plate blank 4</td>
<td>t2</td>
<td>S02842-000</td>
<td></td>
</tr>
<tr>
<td>Feed plate blank 5</td>
<td>t2</td>
<td>S03365-000</td>
<td></td>
</tr>
</tbody>
</table>
6 ADJUSTMENT OF ELECTRIC APPLIANCES

1 Description on fuse

1. Position of fuse

Open the control box cover. At the upper left is the fuse holder having three fuses, when viewed from the front.

2. Fuse capacity

<table>
<thead>
<tr>
<th>No.</th>
<th>Type and capacity of fuses</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cylindrical fuse: 5A–500V</td>
<td>For AC input</td>
</tr>
<tr>
<td>2</td>
<td>Glass tube fuse: 15A–125V</td>
<td>For pulse motor</td>
</tr>
<tr>
<td>3</td>
<td>Glass tube fuse: 15A–125V</td>
<td>For pulse motor, solenoid, and clutch and brake of sewing machine motor</td>
</tr>
</tbody>
</table>
3. Countermeasures when a fuse blows

For your reference, the following table shows phenomena when a fuse blows. Be sure to use a fuse with the same capacity as that of the blown one.

<table>
<thead>
<tr>
<th>Fuse No.</th>
<th>Trouble encountered when a fuse blows</th>
<th>Reference page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No power lamp lights or works.</td>
<td>78 (#2)</td>
</tr>
<tr>
<td>2</td>
<td>The low torque of pulse motor causes the distorted or dislocated patterns.</td>
<td>80 (#7)</td>
</tr>
<tr>
<td></td>
<td>The presser is easily moved by hand even when the motor is energized.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>No presser opens or closes.</td>
<td>79 (#5)</td>
</tr>
<tr>
<td></td>
<td>The low torque of pulse motor causes feed malfunction only with noisy sound of motor.</td>
<td></td>
</tr>
</tbody>
</table>

2. Voltage measurement

The following figures show where to measure voltage on the PCB and connectors.

1. Check for control voltage +5V, +12V and −12V

 Measure voltage with a tester between check pins on the PCB; CH1—CH2, CH2—CH4 and CH2—CH3.

<table>
<thead>
<tr>
<th>CH1</th>
<th>CH2</th>
<th>CH3</th>
<th>CH4</th>
</tr>
</thead>
<tbody>
<tr>
<td>+5V</td>
<td>±0V</td>
<td>−12V</td>
<td>+12V</td>
</tr>
</tbody>
</table>

Check list 1

| CH1+—CH2+ | 5V DC ± 0.25V, acceptable |
| CH4+—CH3+ |
| CH2+—CH3+ | 12V DC ± 0.5V, acceptable |
2. Check for drive voltages V_L and V_H

 (1) Remove the connector P1.

 (2) Measure drive voltages V_L and V_H on the lead wire side of the connector P1 using a tester.

 Note: Use a tester probe on the side of the lead.

<table>
<thead>
<tr>
<th>Check list 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Ω - 3 Ω</td>
</tr>
<tr>
<td>2 Ω - 3 Ω</td>
</tr>
</tbody>
</table>

3. LEDs on PCB

On the PCB are eight LED lamps by which the operator can monitor control signals.

1. Monitoring solenoid output

 The LEDs 1 through 6 light when each solenoid is turned ON.

 LED 1: Right side of presser
 LED 2: Presser foot
 LED 3: Thread wiper
 LED 4: Main presser
 LED 5: Left side of presser
 LED 6: Thread trimming

2. Monitoring output of brakes and clutches

 LED 7 for clutch:
 Lights while the sewing machine is rotating.

 LED 8 for brake:
 Lights momentarily when the sewing machine comes to a stop, accompanied by a braking sound.
4 How to use the DIP switch

1. Changing selectors 1 through 3 of DIP switch ① located on the lower left of the control PCB varies the movement of the presser.

Turn the power off and then open the control box.

The presser is automatically raised after sewing.

Raise the presser by pressing the work clamp lifter pedal after sewing.

Pressing the work clamp lifter pedal ② raises the right presser ③, left presser ④, and presser foot ⑤ simultaneously. To lower them, turn the switches ON as shown below. (The work clamp lifter pedal ② is designed as a 2-stage switch.)
2. Selector 4 of DIP switch (1) is used for selecting the electromagnetic type or pneumatic type.

<table>
<thead>
<tr>
<th>OFF</th>
<th>ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

For electromagnetic type

<table>
<thead>
<tr>
<th>OFF</th>
<th>ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

For pneumatic type

3. Selectors 5 through 8 of DIP switch (1) serve as the test switch for the sewing machine motor.

<table>
<thead>
<tr>
<th>OFF</th>
<th>ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

The sewing machine turns at approximately 230 spm (the thread trimming speed).

<table>
<thead>
<tr>
<th>OFF</th>
<th>ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

The sewing machine turns within a speed range of 400~1200 spm. The speed may be changed with the speed volume on the panel.

<table>
<thead>
<tr>
<th>OFF</th>
<th>ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

The sewing machine turns within a speed range of 400~1200 spm.

Selectors 5 through 8 are provided solely for testing the sewing machine controls. Be sure to set all of them OFF when the sewing machine is in normal use.
Most of the sewing machine failures are due to connector problems such as improperly inserted connectors and faulty contact. Check to make sure that each connector is properly inserted and each pin comes in proper contact with each wire before troubleshooting. For your reference, the following table shows the symptoms resulting from connector failures.

*For the connector No., refer to the control circuit block diagram on page 70.

<table>
<thead>
<tr>
<th>Connector No.</th>
<th>Connection</th>
<th>Main signal</th>
<th>Phenomenon resulting from improper contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>P 1 J 1</td>
<td>Power supply t</td>
<td>+ 5 V, +12 V, -12 V</td>
<td>Abnormal motion No motion</td>
</tr>
<tr>
<td></td>
<td>PCB</td>
<td>Drive +44 V voltage +10 V</td>
<td></td>
</tr>
<tr>
<td>P 2 J 2</td>
<td>PCB</td>
<td>Solenoid drive power supply</td>
<td>Malfunction of presser, presser foot, thread wiper parts, main presser, and thread trimming parts</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P 3 J 3</td>
<td>PCB</td>
<td>Pulse-motor drive power supply</td>
<td>Disorder in X direction Abnormal sound from X pulse-motor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P 4 J 4</td>
<td>PCB</td>
<td>Pulse-motor drive power supply</td>
<td>Disorder in Y direction Abnormal noise from Y pulse motor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P 5 J 5</td>
<td>PCB</td>
<td>Sewing machine starting and stopping currents</td>
<td>Abnormal rotation of sewing machine Poor stop of sewing machine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P 6 J 6</td>
<td>PCB</td>
<td>+ 5 V Needle top position, synchronizing, and rotation signals</td>
<td>The sewing machine turns at high speed and stops. (The emergency stop lamp lights) The mechanism does not stop above the needle top position The sewing machine turns but the feed mechanism does not work</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P 7 J 7</td>
<td>PCB</td>
<td>+ 5 V Speed volume signal</td>
<td>The power lamp does not light Even though the speed volume is turned, the sewing machine keeps turning at a constant speed of 2000 spm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P 8 J 8</td>
<td>PCB</td>
<td>Key switch signal Display signal</td>
<td>Malfunction of programmer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connector No.</td>
<td>Connection</td>
<td>Main signal</td>
<td>Phenomenon resulting from improper contact</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>P 9 J 9 J 26 P 26</td>
<td>PCB FMC device</td>
<td>Read and write signals of microdisk</td>
<td>○ The microdisk will not read. ○ Switches for data, step-back, and tests will not function.</td>
</tr>
<tr>
<td>P 10 J 10 J 24 P 24</td>
<td>PCB X and Y original-point signals</td>
<td></td>
<td>○ The original point is not detected.</td>
</tr>
<tr>
<td>P 11 J 11 J 23 P 23</td>
<td>PCB Emergency stop switch signal LED signal</td>
<td></td>
<td>○ An emergency stop is not initiated. ○ The emergency stop lamp is turned ON but is not released.</td>
</tr>
<tr>
<td>P 12 J 12 J 22 P 22</td>
<td>PCB Pedal switch Start signal Work clamp lifter signal</td>
<td></td>
<td>○ The work clamp lifter and start switches will not work when their pedals are pressed.</td>
</tr>
</tbody>
</table>
1. Connection of connectors

The rear face of the control box:

- J21: Synchronizer connector
- J22: Foot-switch connector
- J23: Emergency stop connector
- J24: Original point signal connector
- J25: Programmer connector
- J26: FMC device connector
- J27: Solenoid connector
- J28: X pulse motor connector
- J29: Y pulse motor connector
- J30: Clutch and brake connector

2. Fan motor

The fan motor cools the inside of the control box. Make sure that the fan is working: if not, the electronic parts may be damaged. Regularly clean the fan equipment so that the air inlet does not become clogged.
TROUBLESHOOTING LIST

<table>
<thead>
<tr>
<th>Trouble</th>
<th>Cause</th>
<th>Check</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inadequate work clamp lift</td>
<td>Improperly positioned lever plate</td>
<td>Distance between the upper surface of the needle plate and the work clamp</td>
<td>Adjust the work clamp height. 45</td>
</tr>
<tr>
<td></td>
<td>Improperly positioned work clamp lifter plate</td>
<td>Clearance between the work clamp lifter plate and arm</td>
<td>Adjust clearance to 2 mm with the adjusting screw. 45</td>
</tr>
<tr>
<td>Malfunction of thread wiper</td>
<td>Interference between the thread wiper and the needle</td>
<td>Clearance between the thread wiper and needle tip</td>
<td>Adjust height of the thread wiper. 48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sewing machine stop position</td>
<td>Adjust the stop position. (19~20 mm above the needle and the upper face of the needle plate) 49</td>
</tr>
<tr>
<td></td>
<td>Improperly positioned thread wiper</td>
<td>Thread wiper position</td>
<td>Adjust the position where the thread wiper starts working. 48</td>
</tr>
<tr>
<td>Improper quantity of wound lower thread</td>
<td>Improperly positioned bobbin holder</td>
<td>Quantity of wound thread</td>
<td>Adjust the position of the bobbin holder.</td>
</tr>
<tr>
<td>Thread escape</td>
<td>Variations in needle thread length</td>
<td>Sub-tension</td>
<td>Adjust sub-tension.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper thread break</td>
<td>Excess upper thread tension</td>
<td>Upper thread tension.</td>
<td>Adjust upper thread tension.</td>
</tr>
<tr>
<td></td>
<td>Improperly mounted needle</td>
<td>Direction of the needle</td>
<td>Mount the needle with the longitudinal groove toward operator.</td>
</tr>
<tr>
<td></td>
<td>The thread is too thick for the needle.</td>
<td>Thread and needle</td>
<td>Select a thread of the proper size so it will match the needle.</td>
</tr>
<tr>
<td></td>
<td>Improper strength and height of the thread take-up spring</td>
<td>Strength and height of the thread take-up spring</td>
<td>Adjust the strength and height of the thread take-up spring.</td>
</tr>
<tr>
<td></td>
<td>Flaws and burrs on the shuttle hook, needle hole plate, needle, etc.</td>
<td>Flaws and burrs</td>
<td>Polish faulty parts or replace.</td>
</tr>
<tr>
<td></td>
<td>Thermal cut</td>
<td>Thread end</td>
<td>Use liquid (silicone) cooling equipment.</td>
</tr>
<tr>
<td>Trouble</td>
<td>Cause</td>
<td>Check</td>
<td>Remedy</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Lower thread break</td>
<td>Excess lower-thread tension</td>
<td>Lower-thread tension</td>
<td>Adjust lower thread tension.</td>
</tr>
<tr>
<td></td>
<td>Flaws on the edge of the needle hole plate and bobbin case</td>
<td>Flaws</td>
<td>Polish faulty parts or replace.</td>
</tr>
<tr>
<td>Lower thread cut.</td>
<td>Improper timing when the main tensioner is released</td>
<td>Timing when the upper thread is released</td>
<td>Adjust timing when the upper thread is released.</td>
</tr>
<tr>
<td></td>
<td>Excessive clearance between the needle and the shuttle hook tip</td>
<td>Clearance between the needle and shuttle hook tip</td>
<td>Adjust the clearance between the needle and shuttle hook tip.</td>
</tr>
<tr>
<td></td>
<td>Improper contact of the needle with the shuttle hook</td>
<td>Lift of needle bar</td>
<td>Adjust the needle bar height.</td>
</tr>
<tr>
<td></td>
<td>Driver overloaded by the needle</td>
<td>Clearance between the driver and the needle</td>
<td>Adjust the needle contact on the driver.</td>
</tr>
<tr>
<td>Stitch skip</td>
<td>Bent needle</td>
<td>Bent needle</td>
<td>Replace the needle.</td>
</tr>
<tr>
<td></td>
<td>Improperly mounted needle</td>
<td>Direction of the needle</td>
<td>Mount the needle with the longitudinal groove toward operator.</td>
</tr>
<tr>
<td></td>
<td>The needle interferes with the shuttle hook</td>
<td>Clearance between the needle and shuttle hook tip</td>
<td>Adjust clearance between the needle and shuttle hook tip.</td>
</tr>
<tr>
<td></td>
<td>The needle is bent.</td>
<td>Lift of the needle bar</td>
<td>Adjust needle bar height.</td>
</tr>
<tr>
<td>Needle break</td>
<td>The needle moves sidewise.</td>
<td>Bent needle</td>
<td>Replace the needle.</td>
</tr>
<tr>
<td></td>
<td>The needle strikes the moving blade.</td>
<td>Timing between the needle and feed</td>
<td>Adjust the position of synchronizer feed detecting part.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Position of the moving blade</td>
<td>Adjust the position of the moving blade.</td>
</tr>
<tr>
<td>Trouble</td>
<td>Cause</td>
<td>Check</td>
<td>Remedy</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>--------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>The upper thread is not cut.</td>
<td>Dull fixed blade</td>
<td>Fixed-blade edge</td>
<td>Sharpen the fixed blade or replace with a new one.</td>
</tr>
<tr>
<td></td>
<td>Insufficient moving-blade motion due to weak thread trimming spring pressure</td>
<td>Thread trimming spring pressure</td>
<td>Replace the thread trimming spring with a stranger one, B.</td>
</tr>
<tr>
<td></td>
<td>The moving blade will not catch upper thread.</td>
<td>Position of the shuttle hook thread guide</td>
<td>Adjust the position of the shuttle hook thread guide.</td>
</tr>
<tr>
<td></td>
<td>The moving blade will not catch upper thread because the final stitch skips.</td>
<td>Direction of seams of the final stitch</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Improperly positioned moving blade</td>
<td>Skipping of the final stitch</td>
<td>Refer to the item, "stitch skip." 67</td>
</tr>
<tr>
<td></td>
<td>Improper timing when the main tensioner is released</td>
<td>Timing for releasing the upper thread</td>
<td>Adjust the release timing for the upper thread. 51</td>
</tr>
<tr>
<td></td>
<td>Excessively weak upper-thread tension</td>
<td>Upper thread tension</td>
<td>Adjust upper-thread tension.</td>
</tr>
<tr>
<td></td>
<td>Excessively weak lower-thread tension</td>
<td>Lower-thread tension</td>
<td>Adjust lower-thread tension.</td>
</tr>
<tr>
<td></td>
<td>Improper strength and height of the thread take-up spring</td>
<td>Strength and height of the thread take-up spring</td>
<td>Adjust strength and height of the thread take-up spring.</td>
</tr>
<tr>
<td>Poorly tightened thread</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

From the library of: Superior Sewing Machine & Supply LLC
<table>
<thead>
<tr>
<th>Item</th>
<th>Thin and medium-thick material</th>
<th>Thicker material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Needle D P × 5 # 9</td>
<td>107415-009</td>
<td>Needle D P × 17 # 14</td>
</tr>
<tr>
<td>Needle D P × 5 # 11</td>
<td>107415-011</td>
<td>Needle D P × 17 # 16</td>
</tr>
<tr>
<td>Needle D P × 5 # 14</td>
<td>107415-014</td>
<td>Needle D P × 17 # 18</td>
</tr>
<tr>
<td>Needle D P × 5 # 16</td>
<td>107415-016</td>
<td>Needle D P × 17 # 19</td>
</tr>
<tr>
<td>Needle D P × 5 # 18</td>
<td>107415-018</td>
<td>Needle D P × 17 # 21</td>
</tr>
<tr>
<td>Needle D P × 5 # 19</td>
<td>107415-019</td>
<td>Needle D P × 17 # 24</td>
</tr>
<tr>
<td>Needle D P × 5 # 21</td>
<td>107415-021</td>
<td>Needle D P × 17 # 25</td>
</tr>
<tr>
<td>Needle hole plate A</td>
<td>S02371-001</td>
<td>Needle hole plate E</td>
</tr>
<tr>
<td>Needle hole plate F</td>
<td>S02373-001</td>
<td></td>
</tr>
<tr>
<td>Shuttle hook A</td>
<td>152685-001</td>
<td>Shuttle hook B</td>
</tr>
<tr>
<td>Shuttle race ring A</td>
<td>152682-001</td>
<td>Shuttle race ring B</td>
</tr>
<tr>
<td>Thread take-up spring</td>
<td>145519-001</td>
<td>Thread take-up spring B</td>
</tr>
<tr>
<td>Thread tension spring</td>
<td>104525-001</td>
<td>Thread tension spring</td>
</tr>
</tbody>
</table>

Caution: Needle and needle-hole plate must be properly selected to match the thread and material to be sewn.
TROUBLESHOOTING FLOW CHART

Description of Symbols

1. means "manual operation."

2. means "switch operation."

3. means "decision."

4. means "refer to Abnormal Item No." in the first column of the list, Chapter 11 COUNTERMEASURES.

5. means "set-up of conditions or situation."

6. means "continue to next page."

7. means "switch-off of power supply."
When power switch is turned ON

Turn power switch ON.

Does the machine's main motor turn? NO

Is the power lamp on? NO

Set micro-disk on FMC device.

Depress the data switch.

Does the data lamp light and read properly? NO

Is the emergency stop lamp on after the data lamp goes out? YES

Power switch ON

1

2

3

4

From the library of: Superior Sewing Machine & Supply LLC
Presser operation

Movement to sewing start point

Depress work clamp lifter pedal.

Does the presser foot rise and does the work clamp lift?

YES
Set cassette or sewing material.

NO

Depress work clamp lifter pedal.

Does the presser foot lower after the work clamp lower?

NO

6

YES

Input sewing data.

Depress start switch.

Does the presser return to the original point?

NO

7

YES

Is the emergency stop lamp on?

YES

8

NO

Does the presser move to the sewing start point?

NO

9

YES

Turn power switch ON.
Input sewing data and move presser to sewing-start point.

Depress test switch

Is the test lamp on?

NO

YES

Depress start pedal.

Does the feed steadily move stitch by stitch?

NO

YES

Depress work clamp lifter pedal.

Does the feeding get faster?

NO

YES

Release work clamp lifter pedal.

Do the presser movements match the micro-disk data?

NO

YES

NO

YES

Does the presser return to the sewing start point correctly?

10

11

12

13
TROUBLESHOOTING FLOW CHART

1. Depress test switch to turn test lamp OFF.
2. Input sewing data and move to sewing-start point.
3. Depress start pedal.
4. Does the machine turn?
 - NO: #14
 - YES: Can the machine make an emergency stop from high speed?
 - NO: #16
 - YES: Does the machine turn in the proper direction?
 - NO: #17
 - YES: Does the presser move needle by needle to form a stitch?
 - NO: #18
 - YES: Is the thread cut?
 - NO: #19
 - YES: Does the machine stop with the needle raised?
 - NO: #20
 - YES: Does the presser return to the sewing-start point as directed by the micro-disk?
Input sewing data and start sewing.

Depress the emergency stop switch while sewing.

When machine and feed stop, does the emergency stop lamp light?

YES

Press the emergency stop switch again.

NO

#21

After the emergency stop lamp goes out and the thread is trimmed, does the machine stop with the needle raised?

YES

Depress the step-back switch.

NO

#22

Does the feed step back stitch by stitch?

YES

Release step-back switch and depress start pedal.

NO

#23

Does the sewing proceed?

YES

#24

From the library of: Superior Sewing Machine & Supply LLC
TROUBLESHOOTING FLOW CHART

Turn ON key on programmer.

Does the feed return to the original point?

YES

Does the display part illuminant?

YES

Does the key switch function normally?

YES

Stop No trouble

NO

Turn power switch ON.

#25

Programming device
Caution on Diagnosis:

1. Be sure to turn the power switch OFF before plugging and unplugging the power cord.
2. Turn the power switch OFF before opening the cover.
3. When symbols (a, b, c, etc.) appear in a circle (○), turn the power switch OFF and measure the resistance. When in a box (□), turn the power switch ON and measure the voltage.
4. When replacing a fuse, be sure to use a new one of the same quality and with the same capacity as the old one.

Before Adjustment:

1. Check for blown fuses.
2. Check to see if each plug is properly inserted.
3. Refer to the Flow Chart to identify the status (#1 ~ 25) from which a problem occurs.

<table>
<thead>
<tr>
<th>Type of trouble</th>
<th>Cause</th>
<th>Check/Repair/Adjustment</th>
<th>Parts to be replaced</th>
<th>Page</th>
</tr>
</thead>
</table>
| #1 | 1. Power is not ON. | a. Check the 3-phase power supply.
 b. Check the 3-phase plug to make sure it is properly connected. Check the grounding wire connections because bad connection results in single-phase operation. | | |
| Machine’s main motor will not turn when power switch is turned ON | 2. Faulty power switch and cord | ① With the power plug and reverse J41 plugs pulled out, turn power switch ON. Check for continuity between the power plug and the J41 plugs (red, white, black and green) using a tester. The power switch and cord are acceptable if they pass the continuity check. | Power switch and cord | 70 |
| #2 | 1. Faulty power cord | ① With the power connector P43 unplugged from the control box, turn the power switch ON and measure the voltage. An acceptable voltage is 200 V AC. | Power cord | 70 |
| Power lamp will not light when power switch is turned ON | 2. Blown fuse | ① Remove the fuse No. 1 and check for continuity. It is acceptable if there is continuity. | Tube fuse 5A | 58 |
| | 3. Faulty power supply unit | ① Remove connector J1 from the PCB. Turn the power ON and measure the voltage. The control box is acceptable if the value is +5 V.
 Note: Use a tester probe on the side of the lead wire. | Control box | |
| | 4. Faulty control PCB | ① If the power supply unit was found normal in Item 3, plug the connector J1 into the PCB. Turn the power ON and measure the voltage between CH1 (+) and CH2 (−). The control PCB is acceptable if the voltage is +5 V. | Control PCB | 59 |
| | 5. Faulty lamp (LED) or cord | ① Remove connector J7 from the PCB and measure the voltage. The panel assembly is acceptable if a pointer moves to the maximum range of magnification. | Panel assembly | 70 |
Type of Trouble

<table>
<thead>
<tr>
<th>Type of Trouble</th>
<th>Cause</th>
<th>Check/Repair/Adjustment</th>
<th>Parts to be Replaced</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>#3 Faulty connector contact</td>
<td>1. Faulty connector contact</td>
<td>a. Check connectors P9 · J9, and P26 · J26 for poor connection, disconnection, and faulty pins.</td>
<td>Control box</td>
<td>59</td>
</tr>
<tr>
<td>2. Faulty power supply unit</td>
<td></td>
<td>b. Turn the power ON and measure the voltages between check pins 1, 2, 3 and 4. The acceptable voltages are +5V (1-2), +12V (2-3) and -12V (3-4).</td>
<td>Control box</td>
<td>70</td>
</tr>
<tr>
<td>3. Faulty control PCB</td>
<td></td>
<td>a. Turn the power ON and press the emergency stop switch. The control PCB is acceptable if the emergency stop lamp lights the first time the switch is pressed and goes out the next time the switch is depressed.</td>
<td>Control PCB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Press the work clamp lifter pedal. If the presser works normally, the control PCB is good.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Faulty foot switch</td>
<td>a. When the power is turned on, the work clamp will automatically work, which means that the foot switch is faulty.</td>
<td>Start switch (adjustment of 2-stage switch)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Remove connector P22 from the control box and press the data switch. If the data switch functions normally, the foot switch is responsible for the trouble.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Faulty FMC device</td>
<td>a. Replace the FMC.</td>
<td>FMC device</td>
<td></td>
</tr>
<tr>
<td>#4 Emergency stop lamp lights several seconds after data switch is depressed</td>
<td>1. Faulty micro-disk</td>
<td>If other micro-disks are read normally, the micro-disk is responsible for the trouble.</td>
<td>Micro-disk</td>
<td></td>
</tr>
<tr>
<td>2. Faulty FMC device</td>
<td>Replace the faulty FMC device.</td>
<td>FMC device</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Faulty control PCB</td>
<td>Replace the faulty control PCB.</td>
<td>Control PCB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#5 Work clamp will not rise when the work clamp lifter pedal is depressed</td>
<td>1. Blown fuse</td>
<td>a. Remove fuse No. 3 and check for continuity. It is acceptable subject to continuity.</td>
<td>Fuse No. 3 (15A)</td>
<td>58</td>
</tr>
<tr>
<td>2. Faulty power supply unit</td>
<td>b. Turn the power ON with the connector J1 plugged into the PCB. Measure the voltage. An acceptable voltage is approximately 44V DC.</td>
<td>Control box</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>3. Faulty switch and cord</td>
<td>c. Remove connector J12 from the PCB to check for continuity. Acceptable if resistance is 0Ω when pedal switch is ON; >0Ω when pedal switch is OFF.</td>
<td>Work clamp lifter switch or cord</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Type of trouble</td>
<td>Cause</td>
<td>Check/Repair/Adjustment</td>
<td>Parts to be replaced</td>
<td>Page</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>------</td>
</tr>
</tbody>
</table>
| #5 | 4. Faulty PCB | ![Diagram](J27 viewed from the pin side) | a. Refer to #3-3, a.
 b. The control part is good if LED's 1, 2 and 5 light when the pedal is depressed.
 c. Turn the power ON with connector P27 unplugged. Press the pedal to turn ON LED's 1, 5, 6. Measure the voltage applied to J27 using a tester.
 - No. 1 - No. 7
 - No. 2 - No. 8
 o Solenoid type: Acceptable if approximately 15V DC is measured.
 o Pneumatic type: Acceptable if approximately 44V DC is measured.
 - No. 4 - No. 10 : Acceptable if approximately 15V DC is measured. | Control PCB | 70 |
| | 5. Faulty solenoid | ![Diagram](J27 viewed from the pin side) | a. Measure resistance with connector J27 unplugged. Acceptable value for the resistance is:
 - No. 1 - No. 7 : Approximately 15 Ω
 - No. 2 - No. 8 : Approximately 15 Ω
 - No. 4 - No. 10 : Approximately 15 Ω | Solenoid | 70 |
| #6 | 1. Faulty pedal switch (Faulty 2-stage switch) | ![Diagram](J27 viewed from the pin side) | a. Make sure the work clamp lowers when the power is turned OFF. If the power is turned ON and the work clamp rises without being manually operated, a faulty pedal switch should be suspected. If the work clamp lowers when the pedal is pressed, but raises again when the pedal is released, the pedal switch is responsible for the trouble.
 b. See #5-5.a. | Foot switch (adjustment of 2-stage switch) | 65 |
| | 1. Faulty start switch and cord | ![Diagram](J27 viewed from the pin side) | a. If the presser will not move at all, plug in connectors J12-P12 and J22-P22 once again.
 b. Check for continuity with connector J12 removed. An acceptable resistance is 0Ω between 7 and 8. The resistance should be 0Ω when the start pedal is turned ON. | Foot switch | 70 |
| | 2. Erroneous original point signal | ![Diagram](J27 viewed from the pin side) | a. If the presser moves in the reverse direction and rasps noisily, an erroneous signal may be responsible.
 b. Plug in connectors J10-P10, J24-P24, J31-P31 and J32-P32 once again.
 c. Remove the pulse-motor connectors P28 and P29 from the control box and turn the power ON. Manually move the feed near the original point. The LED on the original point PCB should blink.
 d. Check to see if light is striking the sensor on the original point PCB (the Y original point in particular). | | 70 |
<p>| | 3. Blown fuse | ![Diagram](J27 viewed from the pin side) | a. Check for continuity with fuses No. 2 and No. 3 removed. | Fuse 15 A | 58 |</p>
<table>
<thead>
<tr>
<th>Type of trouble</th>
<th>Cause</th>
<th>Check/Repair/Adjustment</th>
<th>Parts to be replaced</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>#7 The work clamp will not return to the original point when the start pedal is depressed</td>
<td>4. Faulty power supply unit</td>
<td>a. Refer to #5-2, a. Measure the voltage at connector J1. An acceptable value is 10V DC between 2 and 3.</td>
<td>Control box</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Viewed from the lead wire side.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Faulty pulse-motor and cord</td>
<td>b. Remove connectors P28 and P29 from the control box and measure the resistance. An acceptable resistance value is approximately 0.5Ω between 1 - 2, 1 - 3, 4 - 5, and 4 - 6.</td>
<td>Pulse-motor assembly</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>6. Faulty control PCB</td>
<td>Replace the control PCB.</td>
<td>Control PCB</td>
<td></td>
</tr>
<tr>
<td>#8 Emergency stop lamp lights after presser moves to the original point</td>
<td>1. Faulty micro-disk</td>
<td>Insert a good micro-disk.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#9 The work clamp will not move to sewing start point</td>
<td>1. Faulty micro-disk</td>
<td>Use other micro-disks. If they work normally, the micro-disk is responsible for the problem.</td>
<td>Micro-disk</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Faulty control PCB</td>
<td>Replace the control PCB.</td>
<td>Control PCB</td>
<td></td>
</tr>
<tr>
<td>#10 Test lamp will not light when test switch is pressed</td>
<td>1. Faulty test switch and faulty cord</td>
<td>Remove the connector J9 from the PCB and check for continuity. Acceptable if resistance between A10 - B8 is ∞Ω or 0Ω when test switch is turned ON.</td>
<td>FMC device</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>2. Faulty test lamp and cord</td>
<td>Remove connector J9 from the PCB and check for continuity. The pointer should move to the range of maximum magnification. B12 - B9</td>
<td>FMC device</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>3. Faulty control PCB</td>
<td>Replace the control PCB.</td>
<td>Control PCB</td>
<td></td>
</tr>
<tr>
<td>#11 The feed is not effected during the test</td>
<td></td>
<td>Refer to #7-1, 3, 4, 5 and 6. (See pages 80 and 81.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#12 Rapid feed can not be used during the test</td>
<td>1. Faulty work clamp lifter pedal switch</td>
<td>Refer to #5-3. (See page 79.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of trouble</td>
<td>Cause</td>
<td>Check/Repair/Adjustment</td>
<td>Parts to be replaced</td>
<td>Page</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>------</td>
</tr>
<tr>
<td>#13 The feed does not move as programmed during the test</td>
<td>1. Feed mechanism is improperly adjusted.</td>
<td>Adjust so that the feed moves smoothly by hand.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.</td>
<td>Refer to #7-1, 3 ~ 6. (See pages 80 and 81.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#14 Machine stops turning during sewing</td>
<td>1. Faulty cord</td>
<td>Check connectors J5 – J30, and P30 – J40 for continuity.</td>
<td>ECM harness</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Faulty control PCB</td>
<td>a. Turn power ON and turn ON selector 8 on DIP switch on the PCB. LED 7 should light. Remove P30 from the control box and do the same as a. (above), measure the voltage at J30. An acceptable voltage is approximately 44V DC between 1 – 2.</td>
<td>Control PCB</td>
<td>61 60 62</td>
</tr>
<tr>
<td></td>
<td>3. Faulty machine main motor</td>
<td>a. Check to see if the main motor is turning. Remove connector J40 and check P40 for continuity. An acceptable resistance is approximately 7Ω between 1 – 2.</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>#15 During operation the machine starts turning at high speed and then makes an emergency stop.</td>
<td>1. Faulty synchronizer and cord</td>
<td>a. Check connectors P6–J8 and J21–P21. b. Replace the synchronizer.</td>
<td>Synchronizer assembly</td>
<td>70</td>
</tr>
<tr>
<td>#16 Machine turns in reverse direction</td>
<td>1. Connector plugged in reverse</td>
<td>Correctly plug in power connector J41, which leads to the machine motor.</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>#17 Machine turns but presser will not move</td>
<td>1. Faulty synchronizer and cord</td>
<td>Refer to #15. *When this failure occurs, tests are normally performed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#18 Thread will not be trimmed</td>
<td>1. Faulty synchronizer and cord</td>
<td>Refer to #15.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Faulty PCB</td>
<td>a. Perform the thread trimming with the connector P27 plugged into the control box. Remove the connector cover and measure the voltage by using a probe on the lead wire side. 9 3 and 11 5 The voltage should momentarily register approximately 30V DC during thread trimming.</td>
<td>Control PCB</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>3. Faulty thread trimming solenoid, work clamp lifter solenoid and cord</td>
<td>a. Remove connector P27 from the box and measure the resistance. An acceptable resistance is approximately 7Ω between 3 – 9; 14Ω between 5 – 11.</td>
<td>Thread trimming solenoid assembly Work clamp lifter solenoid assembly</td>
<td>70</td>
</tr>
<tr>
<td>Type of trouble</td>
<td>Cause</td>
<td>Check/Repair/Adjustment</td>
<td>Parts to be replaced</td>
<td>Page</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>------</td>
</tr>
<tr>
<td>#19 Mechanism will not stop above the needle after thread trimming</td>
<td>1. Improperly adjusted synchronizer</td>
<td>If the machine stops but the needle is positioned at random, adjust the position from which the signal is raised.</td>
<td></td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>2. Faulty PCB</td>
<td>The LED 8 on the PCB should light momentarily and the motor brake should click after thread trimming stops.</td>
<td>Control PCB</td>
<td></td>
</tr>
<tr>
<td>#20 Pattern is not formed as programmed</td>
<td></td>
<td>Refer to #13. (See page 82.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#21 Machine will not stop when emergency stop switch is pressed</td>
<td>1. Faulty emergency stop switch and cord</td>
<td>© Remove connector J11 from the PCB and check for continuity. An acceptable resistance is: Between 3-5: 0Ω, ∞Ω if switch ON Between 4-5: ∞Ω, 0Ω if switch ON Between 1 – 2: The probe moves to the range of the maximum magnification.</td>
<td>Emergency stop switch assembly</td>
<td>70</td>
</tr>
<tr>
<td>#22 Thread is not trimmed when emergency stop switch is released</td>
<td></td>
<td>Refer to #18 and #19. (See pages 82 and 83.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#23 Step-back switch will not function</td>
<td>1. Faulty step-back switch and cord</td>
<td>© Remove connector J11 from the PCB and check for continuity. An acceptable resistance is: Between 3-5: 0Ω, ∞Ω if switch ON Between 4-5: ∞Ω, 0Ω if switch ON Between 1 – 2: The probe moves to the range of the maximum magnification.</td>
<td>FMC device</td>
<td>70</td>
</tr>
<tr>
<td>#24 The machine stops during sewing</td>
<td></td>
<td>Refer to #13 and #14. (See page 82.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#25 Program cannot be executed</td>
<td>1. Faulty connector and cord</td>
<td>Plug in connectors J8 and P25 correctly.</td>
<td>Programmer</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>2. Faulty programmer</td>
<td>Replace the programmer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Faulty control PCB</td>
<td>Replace the control PCB.</td>
<td>Control PCB</td>
<td></td>
</tr>
</tbody>
</table>