FINEST QUALITY

Union Special
LEWIS • COLUMBIA
INDUSTRIAL
SEWING
MACHINES

STYLE
39500GC-
060

CLASS 39500
HI-STYLE HIGH SPEED
TWO NEEDLE DIFFERENTIAL FEED
TOE CLOSING MACHINES

Union Special
MACHINE COMPANY
CHICAGO

From the library of: Superior Sewing Machine & Supply LLC
Catalog No. 103 GC
(Supplement to Catalog No. 103 FA)

INSTRUCTIONS

FOR

ADJUSTING AND OPERATING

LIST OF PARTS

CLASS 39500

Style

39500 GC-060

First Edition

Copyright 1967

By

Union Special Machine Co.

Rights Reserved in All Countries

Union Special
MACHINE COMPANY
INDUSTRIAL SEWING MACHINES
CHICAGO

Printed in U.S.A.

October, 1967

2

From the library of: Superior Sewing Machine & Supply LLC
IDENTIFICATION OF MACHINES

Each Union Special machine is identified by a Style number on a name plate on the machine. Style numbers are classified as standard and special. Standard Style numbers have one or more letters suffixed, but never contain the letter "Z". Example: "Style 39500 GC-060". Special Style numbers contain the letter "Z". When only minor changes are made in a standard machine, a "Z" is suffixed to the standard Style number. Example: "Style 39500 GCZ".

Styles of machines similar in construction are grouped under a Class number which differs from the Style number in that it contains no letters. Example: "Class 39500".

APPLICATION OF CATALOG

This catalog is a supplement to Catalog No. 103 FA and should be used in conjunction therewith. Only those parts used on Styles 39500 GC-060, but not on Style 39500 FA are illustrated and listed at the back of this catalog. On the page opposite the illustration will be found a listing of the parts with their part numbers, description and the number of pieces required. Numbers in the first column are reference numbers only, and merely indicate the position of that part in the illustration. Reference numbers should never be used in ordering parts. Always use the part number listed in the second column.

This catalog applies specifically to the standard Style of machine as listed herein. It can also be applied with discretion to some Special Styles of machines in Class 39500. References to directions, such as right, left, front, back, etc., are given from the operator's position while seated at the machine. Operating direction of handwheel is away from operator.

STYLE OF MACHINE

Hi-Styled High Speed, Two Curved Blade Needles, One Looper, One Spreader, Three Thread Overseaming Machines. Differential Feed, Trimming Mechanism with Spring Pressed Lower Knife, Automatic Lubricating System.

39500 GC-060 Light to medium duty machine for closing the toe sections of men's hosiery and socks. Seam specification 521-SSa-1. Standard seam width approximately 7/32 inch from left needle, Stitch range 20-100 per inch. Cam adjusted main and differential feeds. Maximum recommended speed 7000 R.P.M.

OILING

CAUTION! Oil was drained from machine when shipped, so reservoir must be filled before beginning to operate. Oil capacity of Class 39500 is six ounces. A straight mineral oil of a Saybolt Viscosity of 200 to 250 seconds at 100°F Fahrenheit should be used.

Machine is filled with oil at spring cap in top cover. Oil level is checked at sight gauge on front of machine. Red bulb on oil level indicator should show between gauge lines when machine is stationary.

Machine is automatically lubricated. No oiling is necessary, other than keeping main reservoir filled. Check oil daily before the morning start; add oil as required.

The oil drain plug screw is located at back of machine near bottom edge of base. It is a magnetic screw designed to accumulate possible foreign materials which may have entered the crank case. It should be removed and cleaned periodically.
NEEDLES

Each Union Special needle has both type and size number. The type number denotes the kind of shank, point, length, groove, finish and other details. The size number, stamped on the needle shank, denotes largest diameter of blade, measured in thousandths of an inch, midway between shank and eye. Collectively, type and size number represent the complete symbol which is given on the label of all needles packaged and sold by Union Special.

Class 39500 machines use a curved blade needle. The standard recommended needle for the machine covered in this catalog is Type 154 GDS. Below is the description and sizes available of the recommended needle.

Type No. Description and Sizes
154 GDS Slabbed Shank, round point, .060 inch double slab, curved blade, standard length, double groove, struck groove, spotted, chromium plated and is available in sizes 027, 029, 032, 040.

To have needle orders promptly and accurately filled, an empty package, a sample needle, or the type and size number should be forwarded. Use description on label. A complete order would read: "1000 Needles, Type 154 GDS, Size 029".

Selection of proper needle size is determined by size of thread used. Thread should pass freely through needle eye in order to produce a good stitch formation.

Success in the operation of Union Special machines can be secured only by use of needles packaged under our brand name, Union Special, which is backed by a reputation for producing highest quality needles in materials and workmanship for more than three-quarters of a century.

CHANGING NEEDLES

Release pressure on presser foot by turning presser foot release bushing (AG, Fig. 1) and swing presser arm (U) out of position. Turn handwheel in operating direction until needles are at their lowest point of travel. Using hexagonal socket wrench No. 21388 AU, furnished with machine, loosen needle clamp nut about 1/4 turn. Again turn handwheel until needles are at high position. Withdraw needles.

To replace needles, leave needle holder at high position and with the flats to the left, insert needles in holder until they rest against stop pin. Keeping needles in this position, turn handwheel until holder is again at its low point of travel; then tighten nut. Return presser arm (U) to position; re-lock presser foot release bushing (AG).

THREAD STAND

After thread comes from cones on cone support (A, Fig. 1) it is brought up through the back hole of thread eyelet (B), then down through the front hole of thread eyelet.
THREAD STAND (Continued)

Now, the left and right needle threads are threaded through the upper holes (left and middle respectively) of tension thread guide (C, Fig. 1) from front to back. Then through the lower holes from back to front.

The lower looper thread is threaded through the tension thread guide (C), first through the upper hole back to front, second through the middle hole front to back, and third through the lower hole back to front.

All threads then continue between the tension discs (J), through tension post slot (K) in tension post (G) and on through front thread guide (M).

THREADING

Only parts involved in threading are shown in threading diagram (Fig. 1). Parts are placed in their relative positions for clarity.

It will simplify the threading of these machines to follow the recommended sequence of threading the lower looper first, the right needle second and the left needle third. Complete the full threading of one before proceeding to the next one.

Before beginning to thread, swing cloth plate open, turn handwheel in operating direction until needles (X) are in high position. Release pressure on presser foot by turning presser foot release bushing (AG), and swing presser arm (U) out of position.

Be sure threads, as they come from the tension thread guide (C) are between tension discs (J) and in diagonal slot (K) in tension post (G). The tension posts should be positioned so the tension post slot will be at the approximate angle for the different threads as indicated in Fig. 1.

TO THREAD LOWER LOOPER

Double end of thread and lead it through both eyes of lower looper thread eyelet (R, Fig. 1) from right to left. NOTE: thread must pass in front of looper thread pull-off (AF). Lead thread behind fabric guard (S) and through eyelet hole of frame looper thread guide (T). Turn handwheel in operating direction until heel of lower looper (V) is all the way to the left; then thread through both eyes from left to right. Left eye of lower looper can be threaded easily if tweezers are in left hand.

TO THREAD NEEDLES

Turn handwheel in operating direction until needles (X) are at their highest position. Insert both needle threads from right to left, through BOTH eyes of needle thread eyelet (AD), under neck of top cover casting and down through holes in top cover needle thread eyelet (AC). The right needle thread should be threaded in the right hole and the left needle thread through the left hole of the top cover needle thread eyelet. Thread needles from the front.

THREAD TENSION

The amount of tension of needle and looper threads is regulated by three tension nuts (D, Fig. 1). Tension on threads should be only enough to secure proper stitch formation.
PRESSER FOOT PRESSURE

Sufficient presser foot pressure to feed work uniformly should be maintained. Should it be necessary to increase or decrease amount of pressure on presser foot, loosen lock nut (A, Fig. 2) and turn adjusting screw (B). Adjusting screw has a right hand thread so tightening increases pressure, loosening decreases pressure. When pressure adjusting screw (B) has been properly set, tighten lock nut (A). With presser foot resting on throat plate, position locking nut (C) so that its under surface is approximately 1/32 inch to 1/16 inch from the top surface of adjusting screw (B). Set cap (D) against locking nut (C).

FEED ECCENTRICS

Feed eccentrics used in the 39500 GC-060 machines have been selected to produce approximately 35 stitches per inch. It will be noted that the part number of the main feed eccentric is No. 39540 B-60, while that of the differential feed eccentric is No. 39540 B-30. Minor number of the part symbol indicates approximately the number of stitches obtainable when using that eccentric. Unless otherwise specified, the 39500 GC machine will be shipped with the 39540 B-60 main feed eccentric and the 39540 B-30 differential feed eccentric.

Generally speaking, differential (right hand) feed eccentric determines number of stitches produced. Main (left hand) feed eccentric is selected in relation to degree and direction of stretch of material being sewn, or type of operation.

Following stitch number feed eccentrics are available under No. 39540 B-4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 40, 50, 60, 70, 100. Only two eccentrics are supplied with each machine. Additional eccentrics may be ordered separately. To order an eccentric, use No. 39540 B with a minor number suffixed to indicate number of stitches desired. Example: "39540 B-30".

ASSEMBLING AND ADJUSTING SEWING PARTS

Before assembling and adjusting sewing parts, remove cloth plate, fabric guard, chip guard, upper knife assembly, lower knife holder assembly. Then, follow this suggested sequence:

SETTING THE NEEDLE

With throat plate assembled in position, needles should center in the front end of needle slot. When needles are at high position, the needle points should be set 1/2 inch above the throat plate (Fig. 3). To align needles or set the height above the throat plate, move needle driving arm (A, Fig. 3) by loosening clamp screw (B). After needles have been set properly tighten screw (B) and remove throat plate.

At this point, insert lower looper (A, Fig. 4) into bar (C). With lower looper at the left end of its stroke, set the looper point 1/8 inch from center of left needle, using looper gauge No. 21225 G-1/8. Do not have lower looper deflecting the needles. Tighten nut (B).

Now assemble differential (front) feed dog.
SETTING THE REAR NEEDLE GUARD

Set rear needle guard (A, Fig. 5) as high as possible without interfering with either lower looper or movement of lower knife holder, but still in position to deflect needle forward .002 to .004 inch. Screw (B) is used to set the rear needle guard. Make sure there is no interference between the rear needle guard and lower looper.

SETTING THE LOWER LOOPER

Now, finish lower looper adjustment. As looper moves to the right, its point should be set into the needle scarfs (A, Fig. 6) until needles spring forward from rear guard surface another .002 to .004 inch.

SETTING THE FRONT NEEDLE GUARD

Assemble front needle guard (C, Fig. 5). When lower looper is springing needle off back guard, set the front needle guard as close as possible to needles without touching. Screw (D) is used to adjust and set front needle guard. After this setting, make sure there is no interference between the needle guards and differential feed dog.

SETTING THE UPPER SPREADER

Insert upper spreader (A, Fig. 7) in its holder. Screw (B) holds upper spreader in its holder and permits it to be pushed in or out, or turned around its shank. Insert upper spreader holder into upper spreader shaft (if not already in place). Screw (C) on the clamp holds the upper spreader holder in the shaft. Locate upper spreader in its holder so that the shank extends 1/32 to 1/16 inch beyond holder (Fig. 7).

When the upper spreader is at the right end of its stroke, upper spreader holder should be set to position upper spreader shank back of vertical.

Next, turn the handwheel until upper spreader is at the left end of its travel. Check dimensions of the lower point of the spreader with respect to needle and throat plate (Fig. 8) and the following dimensions; distance from centerline of left needle to lower point of spreader should be approximately 9/64 inch, and the distance from throat plate to lower point of spreader should be approximately 15/32 inch.

Check setting to avoid interference between upper spreader and needles on needle down stroke. If needles rub the back of upper spreader, pull spreader out of its holder slightly and rotate holder a short distance counterclockwise, looking from left end of machine. Reset to maintain dimensions suggested above and in Fig. 8.
SETTING THE FEED DOGS

Assemble and set the differential feed dog (A, Fig. 9) and main feed dog (B) so that top surfaces of the feeding surfaces all lay in the same plane. This can be checked by sighting across feeding surface with a straight edge. Feed surfaces should now be leveled with the throat plate surfaces by rotating feed tilting adjusting pin (D). This pin raises or lowers the back end of both feed bars at the same time.

The feeding surfaces should be set level at the time feeding surface first appears above the throat plate. Screw (E) locks feed tilting adjusting pin in place. Now, set feeding surfaces so they rise about 3/64 inch above throat plate.

Set chaining feed dog (C) level with top of throat plate when feed dog is at top of its travel.

SETTING THE LOWER KNIFE

Replace lower knife holder assembly. Lower knife (A, Fig. 10) should be set with cutting edge flush with throat plate surface. Adjustments are made with hexagonal head screw which holds lower knife. Lower knife is spring pressed against upper knife, so no lateral adjustment is necessary when width of trim is changed.

Lower knife may be secured in any position by tightening screw (B) and locking nut (C) against support bracket. Because screw (B) also serves as latch pin for the cloth plate latch spring, it should always be locked with nut (C) even when screw is not tightened against lower knife holder.

SETTING THE UPPER KNIFE

Replace upper knife assembly. Clamp upper knife (D, Fig. 10) in position, setting nut (E) to hold clamp (F) in its most clockwise position against upper knife. At bottom of its stroke, front cutting edge of upper knife should extend not less than 1/64 inch below cutting edge of lower knife. The chain guard (J) should be set down against the upper knife and slightly back from the cutting edge.

After upper knife has been set for proper width of trim, screw (G) should be tightened to lock upper knife holding block (H) in place. This will simplify resetting when upper knife is replaced.
SETTING THE STITCH LENGTH

Length of stitch is determined by the combination of feed eccentrics used. Outer (left) eccentric (A, Fig. 11) actuates main (rear) feed dog; while the inner (right) eccentric (B) actuates the differential (front) feed dog.

In assembling feed eccentrics, be sure hubs are facing each other. Be careful not to damage shaft or key. Tighten nut (C) securely.

To change feed eccentrics, remove nut (C) and washer (D) from end of shaft (E). Turn handwheel in operating direction until key slot in eccentric is toward front. Using hooked eccentric extractor (F), supplied with machine, reach behind eccentrics as shown and withdraw eccentrics. It may be necessary to move handwheel back and forth slightly during extraction. If eccentrics are unusually tight fitting, in addition

to removing nut (C) and washer (D) (Fig. 12) from shaft (E), it may be helpful to remove nut (G) and feed driving connection (H). Then continue as originally suggested.

SETTING THE PRESSER FOOT

Assemble the presser foot to presser arm. With needle in high position, swing presser arm into sewing position and set the presser foot to align needle holes (front and back) and flat on throat plate. The front edge of needle hole in presser foot must be aligned with front edge of needle hole in throat plate. It is also important that the bottom of the presser foot be flat on the throat plate. If necessary, presser foot can be realigned with throat plate slots by shifting the foot lifter lever shaft (H, Fig. 13). To move the shaft, loosen collar screws (B, Fig. 13) and clamp screw (G) and then shift the foot lifter lever shaft to the left or right as required. Retighten collar screws and clamp screw.

The foot lifter lever arm (A, Fig. 13) and the collar (B) secure the shaft. Be sure the presser arm does not bind and rise when presser foot release bushing is unlocked.

Adjust lifter lever stop screw (C) so that presser foot can be raised no higher than upper spreader will permit: then lock the nut (D). There should be from 1/16 to 1/8 inch free motion of foot lifter lever before the presser foot begins to rise. This adjustment should be made with screw (E) and locked with nut (F). Re-assemble the chip guard, fabric guard and cloth plate. To assemble chip guard, turn handwheel until upper knife assembly reaches its highest position.
STARTING TO OPERATE

Be sure machine is threaded according to diagram for your style of machine (Fig. 1). With thread tensions light, set lower looper thread eyelet (R, Fig. 1) about horizontal and back in its front to back location. Operate machine slowly, without presser foot in place, to make sure that chain forms and moves off the tongue freely. Swing presser foot into position, insert material, and sew slowly.

NEEDLE THREAD CONTROL

While sewing on material, check needle thread control as follows: Usually, all needle threads are drawn from cones on needle down stroke. At top of stroke, thread should be just tight enough to feed chain off throat plate stitch tongue. With needle at bottom of stroke, position needle thread eyelet (AD, Fig. 1) so that needle thread cam pull-off (AE) just contacts needle thread. The eyelet (AD) is adjusted correctly in its front to back position when the desired stitch is obtained with the least amount of needle thread tension when sewing over the complete speed range.

LOWER LOOPER THREAD CONTROL

During needle down stroke, forward stroke of looper thread pull-off (AF, Fig. 1) will draw lower looper thread through the tension. When normal amount of looper thread is drawn, lower looper thread will have almost all slack taken up as looper thread pull-off reaches its most rearward position.

If lower looper thread has a loose appearance in the seam, move lower looper thread eyelet (R, Fig. 1) forward and raise slightly. If, however, the eyelet is raised too high and moved too far forward, the looper thread will tend to break excessively—even with a minimum amount of looper thread tension applied.

CAUTION! Do not try to obtain a tight looper thread appearance on the seam by carrying high tensions.

POSITIONING THE PURL TO OBTAIN A FLAT SEAM

If the purl is at the top edge of the garment, the seam can be opened into a near butted appearance. If, however, the purl is under the edge, a less flat and tighter seam results when opened.

Raising and bringing the lower looper thread eyelet (R, Fig. 1) forward causes less thread to be pulled from the cones as the looper travels to the top of its stroke and causes the purl to form more on the top of the edge. If the eyelet is raised and brought too far forward, however, the thread becomes too tight, resulting in looper thread breakage. With a reasonable amount of looper thread tension to insure a flexible chain, the lower looper thread eyelet should be adjusted to position the purl as desired.

THREAD TENSIONS WITH RESPECT TO STITCH

The needle thread tension required is a function of needle thread and the material being sewn. In general, lower looper thread tension should be set as high as possible without causing the needle threads to be pulled too far over the top of the seam and low enough to prevent looper thread breakage.
The parts illustrated on the preceding page and described on this page represent the parts used on Style 39500 GC-060, but not used on Style 39500 FA.

Parts shown in phantom views and bearing no reference numbers are common to Styles 39500 FA and 39500 GC-060.

Use Catalog No. 103 FA for all parts not illustrated or described here.

Reference numbers that are inside a bracket or box on the picture plate and have indented descriptions, indicate they are components of a complete part or assembly.

<table>
<thead>
<tr>
<th>Ref. No.</th>
<th>Part No.</th>
<th>Description</th>
<th>Amt. Req.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>39592 E</td>
<td>Pad, for tension post mounting bracket</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>39592 AE-1</td>
<td>Needle Thread Tension Spring</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>39592 AE-2</td>
<td>Looper Thread Tension Spring</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>39552 H</td>
<td>Needle Driving Arm</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>22596 E</td>
<td>Screw, for needle driving arm</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>50-774 Blk</td>
<td>Stop Pin, for needle</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>154 GDS</td>
<td>Needle</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>39556 J</td>
<td>Presser Arm</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>39520 AC</td>
<td>Presser Foot</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>22738</td>
<td>Screw, for chain shield</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>39530 G</td>
<td>Hinge Spring</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>22768 B</td>
<td>Screw, for stitch tongue and hinge spring</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>39597 AB</td>
<td>Stitch Tongue, marked &quot;EK&quot;</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>22738</td>
<td>Screw, for chip guard</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>39530 P</td>
<td>Chip Guard</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>39505 E</td>
<td>Chaining Feed Dog, 20 teeth per inch</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>39505 AC</td>
<td>Main Feed Dog, marked &quot;AM&quot;, 22 teeth per inch</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>39526 AC</td>
<td>Differential Feed Dog, 22 teeth per inch</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>29477 KJ</td>
<td>Crankshaft and Needle Driving Arm Crank Assembly</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>29477 JN</td>
<td>Needle Driving Arm Crank and Connecting Rod Assembly</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>22596 G</td>
<td>Screw, for needle driving arm crank</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>22587 M</td>
<td>Screw, for needle driving arm connecting rod</td>
<td>2</td>
</tr>
<tr>
<td>23</td>
<td>39541 A</td>
<td>Feed Driving Eccentric Key</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>CO67 E</td>
<td>Cork Plug</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>40-46</td>
<td>Washer</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>258</td>
<td>Nut</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>30-92 Blk</td>
<td>Wood Plug</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>39516-625</td>
<td>Needle Bearing, .0625 inch diameter</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>39516-626</td>
<td>Needle Bearing, .0626 inch diameter</td>
<td>28</td>
</tr>
<tr>
<td>30</td>
<td>39560 A</td>
<td>Needle Guard, rear</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>39528 AC</td>
<td>Throat Plate, marked &quot;AT&quot;</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>39540 B-30</td>
<td>Main Feed Driving Eccentric</td>
<td>1</td>
</tr>
<tr>
<td>33</td>
<td>39540 B-60</td>
<td>Differential Feed Driving Eccentric</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>39578 U</td>
<td>Chip Guard</td>
<td>1</td>
</tr>
<tr>
<td>35</td>
<td>39583 X</td>
<td>Top Cover Needle Thread Eyelet</td>
<td>1</td>
</tr>
<tr>
<td>36</td>
<td>73 X</td>
<td>Screw, for frame thread guide</td>
<td>1</td>
</tr>
<tr>
<td>37</td>
<td>39568 R</td>
<td>Frame Thread Guide</td>
<td>1</td>
</tr>
</tbody>
</table>
# THREAD STAND AND MISCELLANEOUS TOOLS

<table>
<thead>
<tr>
<th>Ref. No.</th>
<th>Part No.</th>
<th>Description</th>
<th>Amt. Req.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21113 F</td>
<td>Thread Stand Eyelet and Support Rod</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>21104 V</td>
<td>Pad, for thread cone</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>69 S</td>
<td>Spool Pin</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>21130 W-3</td>
<td>Cone Support</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>22650 CB-4</td>
<td>Screw, for thread stand eyelet</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>22650 CE-6</td>
<td>Screw, for thread stand rod</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>21104 AA</td>
<td>Thread Stand Rod</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>652 J-24</td>
<td>Washer</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>652 J-16</td>
<td>Washer</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>WA9 A</td>
<td>Lock Washer</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>651 A-16</td>
<td>Nut</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>SC333 A</td>
<td>Wood Screw, round head, #9 x 5/8 inch long</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>39592 W</td>
<td>Tension Post Bracket, for mounting on table-board</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>660-264</td>
<td>&quot;S&quot; Hook, for treadle chain</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>116</td>
<td>Wrench, for 9/32 inch nuts</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>39599 A</td>
<td>Threading Wire</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>660-240</td>
<td>Thread Tweezers</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>21388 AU</td>
<td>Socket Wrench, for 3/8 inch nuts holding feed eccentrics</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>21227 BF</td>
<td>Cam Extractor</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>421 D-34</td>
<td>Treadle Chain</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>21202</td>
<td>Screwdriver, 3/16 inch diameter, 9 3/8 inches overall</td>
<td>1</td>
</tr>
<tr>
<td>†</td>
<td>39595</td>
<td>Isolators, rubber</td>
<td>4</td>
</tr>
<tr>
<td>†</td>
<td>28604 L</td>
<td>Container of Oil, 16 ounces, Spec. 83</td>
<td>1</td>
</tr>
</tbody>
</table>

* Not furnished with machine.
† Not shown on picture plate.
UNION SPECIAL maintains sales and service facilities throughout the world. These offices will aid you in the selection of the right sewing equipment for your particular operation. Union Special representatives and service men are factory trained and are able to serve your needs promptly and efficiently. Whatever your location, there is a Union Special Representative to serve you. Check with him today.

ATLANTA, GA.
BOSTON, MASS.
CHICAGO, ILL.
DALLAS, TEXAS
LOS ANGELES, CAL.
NEW YORK, N. Y.
PHILADELPHIA, PA.

MONTREAL, QUEBEC
BRUSSELS, BELGIUM
LEICESTER, ENGLAND
LONDON, ENGLAND
PARIS, FRANCE
STUTTGART, GERMANY

Representatives and distributors in all important industrial cities throughout the world.

Union Special
MACHINE COMPANY

400 N. FRANKLIN ST., CHICAGO, ILL. 60610

From the library of: Superior Sewing Machine & Supply LLC